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Three different Naviel-Stokes computational models of incompressible viscous- 
sublayer turbulence have been developed. Comparison of computed turbulence 
quantities with experiment is made for the mean streamwise velocity, Reynolds 
stress, correlation coefficient and dissipation ; for the r.m.s. fluctuation intensities of 
streamwise vorticity, Reynolds stress and three velocity components ; and for the 
skewness and flatness of fluctuating streamwise velocity and Reynolds stress. The 
comparison is good for the first three of these quantities, and reasonably good for 
most of the remainder. 

Special computer runs with a very fine mesh and small Courant number were made 
to define the limiting power-law behaviour of turbulence near a wall. Such behaviour 
was found to be confined to about 0.3 wall units from the wall, and to be: linear for 
streamwise turbulence, spanwise turbulence, vorticity normal to the wall, and for the 
departures from their respective wall values of dissipation, streamwise vorticity and 
spanwise vorticity ; second power for turbulence normal to the wall ; third power for 
Reynolds stress; and a constant value of the correlation coefficient for Reynolds 
stress. A simple physical explanation is given for the third-power variation of 
Reynolds stress and for the broad generality of this limiting variation. 

Applications are made to Reynolds-average turbulence modelling : damping func- 
tions for Reynolds stress in eddy-viscosity models are derived that are compatible 
with the near-wall limiting behaviour ; and new wall boundary conditions for 
dissipation in k-e models are developed that are similarly compatible. 

1. Introduction 
The modelling of near-wall turbulence represents one of the weak links in present 

computational methods for wall-bounded flows. Turbulence production, dissipation 
and kinetic energy reach their maxima within the extremely thin viscous sublayer 
adjacent to a wall. Because of this thinness it has not been technically feasible to 
measure, in the variety of flows of practical interest, some of the important elements 
involved in turbulence modelling - such as dissipation rate and the limiting near-wall 
behaviour. Such circumstances have restricted significantly the accuracy of present 
turbulence models. 

The objective of the present research is to explore use of the time-dependent 
Navier-Stokes equations as a method of modelling viscous sublayer turbulence, and 
thereby of investigating the limiting behaviour of turbulence very near a wall. This 
method attempts to model directly the experimental observations of highly elongate 
organized eddy structures near a wall. Such modelling is not limited by the extreme 
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thinness of the viscous sublayer, but is limited by the degree to which realism can 
be built into the boundary conditions for the Navier-Stokes equations. 

One of the principal objectives of this research is to  provide a basis for strengthening 
certain aspects of present Reynolds-average closure schemes. Because the modelled 
differential equations for free turbulence yield demonstrably incorrect results near 
a wall, various ad hoc functions (up t o  5 in number for k-e methods) are conventionally 
added in an effort to eliminate this shortcoming. Without a sound guide from 
experiment, the inevitable consequence has been that different models with different 
ad hoc functions have yielded different results (Patel, Rodi & Scheuerer 1981). 
Navier-Stokes computations can provide an improved guide to  the modelling of 
these functions. 

Another objective of this research is to use numerical computations to investigate 
the limiting behaviour of various turbulence quantities as the distance from the wall 
approaches zero. The limiting behaviour of Reynolds stress has long been a 
controversy (e.g. Hinze 1975). Some, for example, have suggested a third-power 
variation with distance from the wall, while others have suggested a fourth or even 
higher power. Numerical computations can define this behaviour by employing an 
extremely fine mesh near the wall. 

The method used herein to  model turbulence is termed ' coherent-structure ' 
modelling, since i t  overtly attempts to model organized quasi-periodic eddy structures 
in the sublayer. I n  recent years several coherent-structure models of viscous sublayer 
turbulence have been explored. An initial model of Hatziavramidis & Hanratty 
( 1979) used extremely simplified boundary conditions and obtained some interesting 
qualitative features, although the results were not quantitatively realistic in 
important respects (e.g. yielding zero Reynolds stress and zero turbulence intensity 
at the outer edge of the viscous sublayer). Subsequent coherent-structure models of 
Chapman & Kuhn (1981), Nikolaides & Hanratty (1983), and Nikolaides (1984) have 
employed somewhat more sophisticated boundary conditions in representing the 
coherent structures, and have yielded more realistic results. One unrealistic aspect 
of these models, however, is that  they produce anomalously high values for 
dissipation near the outer edge of the viscous sublayer (Kaneda & Leslie 1982). 
Because dissipation is a key quantity modelled in Reynolds-average closure schemes, 
some attention was given in the present research t o  this anomaly, although it is not 
believed to affect the conclusions reached about the limiting behaviour of turbulence 
near a wall. 

Three different coherent-structure models are explored herein. They differ mainly 
in the complexity of the space- and time-dependent boundary conditions imposed 
on the Navier-Stokes equations a t  the outer edge of the viscous sublayer. All of the 
models are restricted to incompressible flow without heat transfer. The mathematical 
development includes the effects of a mean streamwise pressure gradient, although 
comparisons with experimental data are made herein only for zero or small pressure 
gradients. 

2. Experimental observations guiding model formulation 
The key technical step in model development is to  construct appropriate boundary 

conditions for the three fluctuating velocity components at the outer edge of the 
viscous sublayer (VSL). An attempt is made to  formulate these so as to  reflect as well 
as possible the main organized motions delineated by experiments. The principal 
observational features of coherent sublayer structure used as guidelines for the 
velocity boundary conditions to emulate are listed in the paragraphs which follow. 
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(i) Relatively small-scale eddies (SSE) produce the principal Reynolds stress 
through ejection and sweep motions (Kline et al. 1967 ; Corino & Brodkey 1969; Kim, 
Kline & Reynolds 1971; Wallace, Eckelmann & Brodkey 1972; Lu & Wilmarth 
1973). 

(ii) Organized large-scale eddies (LSE) are also observed (Kovasnay, Kibens & 
Blackwelder 1970; Falco 1977 ; Brown & Thomas 1977). Their mean period determined 
from streamwise autocorrelation data is TLsE x 5S/ U,, independent of Reynolds 
number (Badri Narayanan & Marvin 1978). 

(iii) Streamwise streaks of low-speed and high-speed fluid alternate spanwise 
(Kline et al. 1967; Gupta, Laufer & Kaplan 1971; Hirata et al. 1982; Moin & Kim 
1982; Iritani, Kasagi & Hirata 1983). Many experiments indicate that the mean 
spanwise spacing between low-speed streaks is about A+ NN 100. 

(iv) Streamwise vortical motions are a prominent eddy structure at the outer edge 
of the VSL (Bakewell & Lumley 1967 ; Kline et al. 1967 ; Clark & Markland 1969 ; Kim 
et al. 1971; Lee, Eckelmann & Hanratty 1974; Willmarth 1975; Blackwelder & 
Eckelmann 1979; Kreplin & Eckelmann 1979; Kim 1983, 1984). The principal 
Reynolds-stress-producing events are associated with vortical pairs, although single 
streamwise vortical structures appear more common than pairs (Moser & Moin 1984). 

(v) Coherent sublayer eddy structures are highly elongate streamwise, (Kline et al. 
1967; Grass 1971; Kim et a,?. 1971; Cantwell, Coles & Dimotakis 1978; Blackwelder 
& Eckelmann 1979; Kreplin & Eckelmann 1979). Such observations enable a 
significant mathematical simplification to be made in the computational modelling. 

(vi) There is a statistically mean period TB,A between ejection/sweep bursts per 
length A of span when observed visually by the dye technique (Schraub & Kline 
1965; Donohue, Tiederman & Reischman 1972; Smith 1978). There is also a different 
mean period T between such bursts when measured by a hot wire at a fixed point 
in the flow. Various measurements of the latter show considerable scatter (e.g. 
Bandyopadhyay 1982) and vary with distance from the wall (Nakagawa & Nezu 
1981). At the outer edge of the viscous sublayer, where our boundary conditions are 
applied (y+ = 40), the recent measurements of Andreopoulos, Durst & Jovanovic 
(1983) and of Blackwelder & Haritonidis (1983) yield the relatively consistent result 
of T+ % 250 to 300 independent of Reynolds number. 

(vii) The principal Reynolds-stress production is intermittent, consisting of periods 
of relative quiescence terminated by burst events (Corino & Brodkey 1969 ; Nychas, 
Hershey & Brodkey 1973; Offen & Kline 1975; Blackwelder & Kaplan 1976; Praturi 
& Brodkey 1978). Recent observations of Johansson & Alfredsson (1982) have also 
revealed large-scale inward motions (sweep) preceding an ejection event. Their data 
for the smallest threshold values and the longest integration times show ejection/ 
sweep and sweep/ejection events to be about equally numerous. Hot-wire measure- 
ments indicate that the duration of these intensive events is only about 20-25 % of 
the mean period between bursts. 

(viii) Visual observations of the sublayer flow reveal it to be a mixture of order 
and disorder (Cantwell et al. 1978). 

3. Computational models 
Before describing features which distinguish between the three computational 

models, several features that are common to all are to be noted. These relate to the 
small-scale eddy structure, and to a mathematical approximation made in view of 
the highly elongate streamwise eddies observed in the viscous sublayer. 
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3.1. Common modelling characteristics 
I n  each model, the boundary condition on each velocity component is composed of 
two separate components structured such that the Reynolds stress a t  the outer edge 
of the viscous sublayer is produced only by a small-scale eddy component (SSE, 
subscript 1)  that  is periodic in time and space. The SSE velocity boundary conditions 
are of the general form 

(1) 

where 5 = 2xZ/h is the dimensionless spanwise coordinate, t is time,f(t) is a periodic 
function with frequency N,, and d,,, is a phase angle to allow for the circumstances 
that the spanwise velocity pulse in a burst may lead (or lag) the uel and wel 
components. All of these quantities are in dimensionless wall variables. This SSE 
structure corresponds to 180" phase difference between uel and wel, in accordance 
with experimental observations (Wallace, Brodkey & Eckelmann 1977) of condition- 
ally sampled bursting events. The spanwise variation as sin [ for we,, and as cos 5 
for we,, correspond to a simple contrarotating vortical motion. The functionf(t) is 
structured such that for 0 < 5 < 71 an ejection precedes a sweep, whereas for 
x < [ < 271 a sweep precedes an ejection. Thus ejection/sweep and sweep/ejection 
events are equally numerous in the models. 

The mean frequency N, of the SSE burst events is also taken to be the same for 
all models. With the variable-interval time average (VITA) technique used by 
Blackwelder & Haritonidis (1983) to determine bursting frequency, only ejection/ 
sweep events were counted. Since these meander spanwise over a fixed hot-wire 
probe, their measured mean frequency off,, x 0.0035 wall units would correspond to  
an average over space and time in the computational models. For 0 < [ < x the 
frequency of computational ejection/sweep events is !jN,x. For x < [ < 2n: it is 0. 
Thus the average frequency of ejection/sweep events over space and time is 
f,, = N1/4n:, which corresponds to the value Nl = 471 (0.0035) = 0.044. 

This value for Nl is not inconsistent with the mean burst period of T',,A x 120 
determined from visual observations with the dye technique (Schraub & Kline 1965; 
Donohue et al. 1972; Smith 1978). If an ejection precedes a sweep, dye first 
accumulates along the spanwise station of the event and then becomes visible as a 
burst of dye when i t  is subsequently ejected upward. If a sweep precedes an ejection, 
however, dye is first removed away from the spanwise station of the event by the 
sweep; and hence there may not be enough dye left a t  this station to make the 
subsequent ejection visible. Thus the 'burst '  frequency per h of span from dye 
visualization may represent primarily the mean frequency of ejection/sweep events, 
while missing most of the sweep/ejection events. If this is the case, then the dye 
technique would yield TeSlA x 120. I n  the computational model N ,  TeslA = 2x, so that 
the value of N, = 0.044 corresponds to Tes,A = 143, reasonably close to  the value 
interpreted from dye observations. 

Still further elements of commonality for all models are the turbulence intensities 
a t  the outer edge of the viscous sublayer. These are inputs a, P, y into the 
computations defined in wall variables as 

u,, = f(t) sin 6, we,  = -f(t) sin [, we, = f(t + $,,) cos [, 

a = <u:+>, P = <v:+>, Y = <w:+>, (2) 

for streamwise, normal and spanwise turbulence intensities respectively. The values 
a = 2, P = 1 and y = 1.3 are used t,hroughout. 
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nv N = - .  
9 I 

The experimental observation of highly elongate streamwise eddies in the viscous 
sublayer provides a basis for mathematically simplifying the models. Velocity 
derivatives in the streamwise direction are neglected compared with velocity 
derivatives in the spanwise and normal directions. The recent turbulence simulations 
of Moser k Moin (1984) show that, although the u-patterns are elongate streamwise, 
the v- and w-patterns are less so ; hence some approximation is introduced by making 
this mathematical simplification. The approximation treats three velocity com- 
ponents fluctuating in two space dimensions and time ( Y ,  2, T ) . t  Being more 
than two-dimensional flow, but not fully three-dimensional, this mathematical 
approximation has been termed ' two-and-a-half-dimensional ' flow, or 'slender- 
turbulence ' theory. 

3.2. Three models investigated 
The three different computational models investigated are distinguished mainly by 
their outer-edge boundary conditions on velocity. The models are termed Model 1, 
2 and 3 in order of increasing complexity. 

Model 1 

This relatively simple model is essentially the same as that reported by Chapman 
& Kuhn (1981). It considers two coherent harmonic components of motion at the 
outer edge: one represents small-scale eddies (SSE) and the other large-scale eddies 
(LSE). The three fluctuating edge velocities are : 

Component 1 Component 2 

SSE SSE 

u, = Za, sin (N,T)  sin 6 +[2(a2-a9]i sin (N,2T+$,2), '1 
w e  = Z P ~ ~ ~ ( N , T + # , )  cosg + [ 2 ( y ~ - - $ ) 1 ~ s i n ~ ~ , , ~ + 4 , , ) . )  
v, = - 2a sin (N,T)  sin [, (4) 

In order for the (uv), correlation coefficient to be 0.45, ul/u also must be 0.45; and 
hence a1 = 0.9. In order for (dG/dY), to be zero in accordance with experimental 
data, it follows from the continuity equation that q5wl = in. The value q5wz = $ 7 ~  is 
determined by computer trial to yield as good agreement as possible with the law 
of the wall for ( V (  Y)), the slope at the wall, and the Reynolds-stress distribution. 
The value q5uz = 0 is also determined by computer trial to yield a reasonable level 
of skewness for u,. Since Nl is taken as 0.044, the computations for model 1 differ 

t Inasmuch as we use wall variables throughout, the + subscript will be dropped from velocity 
components and coordinates for simplicity in the remaining sections of this text. 
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FIGURE 1 .  Spectral density of the three components of velocity fluctuation at Y = 40 from data 
of' Fulachier (1972). 

somewhat from those of Chapman & Kuhn who used N ,  =0.025,   in and 
q5u2 = $in, but otherwise used the same constants. 

The LSE frequency Nu, is determined by the mean period TLsE of organized 
large-scale eddies as obtained from the experimental relationship U ,  TLsE x 56. 
Since Nu, TLsE = 271, the large-eddy frequency is Nu, = 271 U,/56, which is Reynolds- 
number-dependent. For simplicity, numerical computations herein have been made 
for Nu,  = N ,  = 0.044. This corresponds to a Reynolds number of Re, x 14000 for 
a plate or channel flow. By making computations at  this Reynolds number at  which 
outer and inner frequencies are equal, we circumvent the issue of whether the 
large-scale eddies scale with outer variables or wall variables. 

Model 2 

Relative to Model 1, Model 2 adds complexity by structuring the velocity boundary 
conditions to simulate intermittent production of burst events and hence of 
Reynolds stress. Also, two components of velocity for each of u,, v, and we were 
modelled to represent the principal eddy scales reflected in spectral data. Such data 
for all three velocity components have been obtained by Fulachier (1972) at y-values 
near the outer edge of the viscous sublayer. Spectral parameters at  Y = 40, 
interpolated between his measurements at Y = 31 and 77, are shown in figure 1 
wherein k represents the wavenumber determined by the Taylor hypothesis and the 
mean streamwise velocity, and f the spectral density. The areas under the curves of 
u2kfu, v2kfv and w2kfw versus log(k) are proportional to the relative amounts of 
kinetic energy in these velocity components. The two dashed lines shown along the 
k-axis correspond to large eddies of scale n/6 (where 6 is the boundary-layer 
thickness) and to the small eddies of scale K / A .  

The use of these streamwise spectral data to provide model information for the 
spanwise validation of  u, v and w is based on identification of the small-scale eddies 
with the elongated structures, as in Model 1. The intermediate- and large-scale eddies 
are then assumed to be identified as having longer spanwise wavelengths. The 
Reynolds-stress-producing SSE, of course, must be included for all three velocity 
components. If only a second component is selected, the spectral data suggest that 
the most appropriate such component would be a large-scale eddy for u ,  and 
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FIGURE 2. Sketch of truncated Fourier aeries approximation to rectangular pulse function. 

medium-scale eddies (MSE) for v and w. In contradistinction to the structure of 
Model 1 ,  these spectral data do not indicate the presence of a major LSE component 
for w. Thus the boundary conditions for Model 2 are structured to represent SSE and 
LSE for u,, coupled with SSE and MSE for v, and we. The latter MSE are structured 
to be out of phase in both space and time in order to yield UW = 0 throughout the 
sublayer. 

SSE LSE MSE 
Scale A Scale < 10 A Scale 3 A 

u, = 2/2 a, F,(#) sin C 

we = d2 ~ l F w ( 4 )  COSY 

+ 2/2a, sin (Nu$"+ 9uz), 
ve = - d2 PI W9) sin Y +2/3, sin(N,,T) sinif;, 1 (5) 

where T = time in wall variables, and Nl = frequency of ejection/sweep events, 
Nu, = 2x U,/56 = frequency of large-scaleeddies, Nu3 = Nw3 = frequency of medium- 
scale eddies, [ = 2xZ/h,  $ = NIT,  

+ 27, cos WW3T) cos 4 C, J 

The function H (9) is formed by the first M terms of a Fourier series approximating 
the intermittent rectangular pulse function sketched in figure 2. 

M 

H ( $ )  = X [a, cog (n$)+b,  sin (n$)l, (8) 
1 

1 XI sin (nXl ) - -  sin (nX,)  , 
xn x2 

[cos (nX,)  - I ]  + [cos (nX,)  - 11 
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Values of M between 3 and 5, and values of X, # X, have been investigated with 
little difference in computed results. For the results presented herein, M = 5 and 
X, = X, = 0.3. The phase angle g5,, = 60' was determined by computer trial, as in 
Model 1 ,  to yield a reasonable level for the skewness of u. The phase angle g5,, = 25.8' 
was mathematically determined, also as in Model 1 ,  by the requirement that 
(a?/ay), = 0. Since M = 5, this particular determination involved solving for the 
roots of a fifth-order polynomial. It is noted that g5,, = 25.8' corresponds to 
the SSE pulse in w leading in time the corresponding ejection/sweep pulses of 
u and 1 ) .  

The (uv), correlation coefficient for the above boundary conditions is 
-(Ruv)e = a,B,/ap, which is set equal to 0.45. The ratio pl/p is evaluated from 
various experimental data on peak-to-peak amplitude ratios in ejection/sweep 
events (Kim et al. 1971; Blackwelder & Kaplan 1976; Chen & Blackwelder 1978; 
Nakagawa & Nezu 1981). Such data suggest a value of pl/B between 0.49 and 0.72. 
For simplicity, P1/p = 1 / 4 2  = 0.707 is used in the numerical computations. This 
corresponds to equal amounts of w2 energy in small-scale and medium-scale eddies. 
From the correlation-coefficient equation it follows that al/a = 0.635. 

The value of y l / y  was determined by computer trial to yield a relatively smooth 
curve for w'( Y ) .  In runs with only the SSE active, it  was found that various prescribed 
values of y1 would result in substantially the same level of (w') x 0.45 over much of 
the sublayer. Hence, y,  = 0.45 was selected as the outer-edge turbulence intensity 
of the SSE for Model 2. 

The frequency Nu, of the large-scale eddies is taken to be the same as for 
Model 1 .  As in Model 1,  numerical computations for Model 2 have been made 
for Nu, = N, = 0.044, corresponding to a Reynolds number of Re, x 14000. The 
frequencies Nv3 and Nw3 were taken to be equal. In the calculations for Model 2 they 
were taken to be Nu, = N,, = 3N,.  This choice was based on the assumption that 
the small scales are the highly elongate structures which persist for some time, while 
the large scales are more transient. Thus, it is reasonable to take the large-scale or 
intermediate-scale frequency to be greater than that of the small scales. Also, the 
small scales are intermittent so that the relation between N, and N,,, and N,, is not 
really 1 to 3, but more like 4 to 3. The ultimate choice was based on the results of 
numerical experiments which indicated that Nu, = Nw3 = 3N, was the best. 

For Model 2 a body pressure gradient is not imposed in association with the 
large-scale eddies. This feature differs from Model 1.  Computer runs for Model 2 were 
made both with and without the body pressure-gradient term. The results were 
somewhat better without this term, although the differences were not major. 

In summary thus far, Model 2 differs from Model 1 in several ways: it simulates 
intermittent bursting and Reynolds-stress production, rather than sinusoidal as in 
Model 1 ; it  employs a medium-scale eddy component for v,, whereas Model 1 has 
none; and it also employs a medium-scale component for we, whereas Model 1 
employs a large-scale component. A further difference is that Model 2 does not 
employ a body pressure-gradient term associated with the large-scale eddy component 
for u. 

Model 3 
The primary feature characterizing Model 3 is the use of time functions for LSE 

and MSE that are randomly generated instead of harmonic. Otherwise it is similar 
to Model 2. The periodic small-scale eddy structure remains the same as in Model 2. 
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The outer-edge boundary conditions for Model 3 are 

SSE LSE MSE 
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Scale A Scale 2 10 h Scale 3 h 

(12) 

where the three functions Bu2(T),'Rv3(T),  R,,(T) are random functions of time, each 
independently generated, and each normalized to have an r.m.s. value of unity. All 
constants N,,  a,, a2, pl, p3, y1 and y3  are the same as in Model 2. Model 3 simulates 
disorder in the LSE and MSE, whereas Model 2 simulates relatively coherent 
harmonic order in these eddies. 

u, = d2 a,F,(N,T) sin5 +a, R,,(T) ,  
v, = d2 /3,F,(N,T) sin 5 
we = d2 YlFW(N1T) cos 5 

+d2 B3RW3(T) sinif;, 
+ d2 Y3 R,,(T) cosi 5, 

4. Numerical computation method 
A computer code recently developed by Kim & Moin (1984) was adapted to the 

conditions of this study. The reader is referred to their report for details of the 
numerical algorithms. A brief qualitative description is given herein of the numerical 
method along with an account of the modification made for present computations. 

With the pressure gradient split into three terms, the Navier-Stokes equations in 
tensor notation are 

aui - 
ax, 
- - 0 (i = 1 ,  2, 3), 

where U, = the velocity components U ,  V ,  W corresponding to i = 1 , 2 , 3  (streamwise, 
normal, spanwise) respectively, is the mean pressure normalized by the wall shear 
stress r,, P is the pressure perturbation normalized by the wall shear stress, F, is a 
body force used in Model 1 which corresponds to a global pressure gradient associated 
with the LSE, and xi, is the Cartesian coordinates X, Y ,  Z in wall variables. 

The equations are to be solved in a rectangular region 0 < Y < Ye, 0 < Z < Z,,,. 
The flow is assumed to be periodic in Z with zero velocity at Y = 0. At Y = Ye, the 
boundary conditions are 

In Model 1, the functions l$(Z') are taken to correspond to the LSE pressure gradients 
of simple oscillationing shear flow in the X- and Z-directions. Thus, for this model 

and the mean pressure P is assumed to be a function of X alone. For Models 2 and 
3, F,(T) was set to zero. 

For numerical solution of (13) and (14), Kim & Moin use an Adams-Bashforth 
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formula for convective terms, and centred differences for viscous terms. A factored 
semi-implicit solution algorithm is used that is explicit in convective terms, and 
implicit in viscous terms. The first step in time-advancing the solution calculates a 
predictor velocity field which satisfies appropriate boundary conditions, but not the 
continuity equation. A second step then corrects the velocity field to satisfy the 
continuity equation and the Poisson equation for pressure. The method is second-order 
accurate in both space and time. 

An accuracy test of the Kim-Moin code was made by computing oscillating shear 
flow and comparing results with exact analytical solutions (Chapman & Kuhn 1981). 
With 320 time steps per cycle, and 17 points uniformly spaced across the oscillating 
layer, the numerical method was found to  be very accurate, reproducing the analytical 
solution within 0.1 yo. 

I n  making numerical computations, an arbitrary initial velocity profile is needed 
a t  T = 0. To accelerate convergence to periodicity, an  analytical approximation for 
a turbulent-boundary-layer profile was used. The boundary conditions a t  Ye were 
multiplied by a factor which starts a t  zero and reaches unity asymptotically over the 
first time cycle of the computation. The solution was then advanced until periodic 
flow conditions were attained, usually after about 3 or 4 cycles of time for Models 
1 and 2. Space and time averages were then taken over a cycle of periodic flow. A 
typical computation of viscous-sublayer turbulence for our normal mesh used 400 
time steps per small-scale cycle: 30 points in the Y-direction; 32 points in the Z -  
direction; and, for Models 1 and 2, required 4 to 5 minutes of CRAY X-MP time per 
run. The corresponding run time for Model 3 was considerably longer due to the lack 
of periodicity. For the special fine mesh used to  define the near-wall behaviour of 
turbulence, up to 3200 time steps per small-scale cycle were used with 60 points in 
the Y-direction, 64 in the Z-direction, and a run time of over one hour. 

The computational method was found to be quite stable as long as the time step 
was smaller than a certain value which depends on the spatial grid size. The 
particular value was determined by trial and error for each grid. Below the instability 
limit, the solution obtained was not strongly dependent upon the time-step size, but 
was affected somewhat by the spatial grid. 

The method used to  generate random time sequences for Model 3 is given in 
Chapman & Kuhn (1984). I n  order to  keep computer time within acceptable bounds 
the correlation coefficient between two successive terms in a time sequence was set 
a t  0.95. This corresponds to an integral time-scale of approximately 40 wall units, 
close to  the experimental value for the u-component as deduced from the data of 
Fulachier (1972) and Elena (1977). 

I n  order to obtain relevant results for the statistical quantities, the random 
sequences must be calculated until a steady state is reached. The number of steps 
required for this is not known a priori. Owing to  the combination of periodic and 
random functions, the total number of steps used must be an integral number of 
periods of the small-scale components. For the results discussed herein, the calcula- 
tions were carried out until two successive cycles resulted in a negligible change in 
the accumulated statistics. 

5. Computational results compared with experiment 
Law of the wall. As illustrated in figure 3, the mean streamwise velocity profile 

computed for Models 1 and 2 agrees well with experiment. For Model 3, however, 
the computed values of ( U )  are low. Because of the relatively long computer times 
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276 D.  R. Chapman and G’. D .  Kuhn 

0.8 

Ut 

0.4 

0 

1.5 

1 .O 

W‘ 

0.5 

10 20 30 40 
Y 

0 10 20 30 40 50 
Y 

FIQURE 5. Intensity of normal and spanwise turbulence. Legend as in figure 4. (a)  d, ( b )  w‘. 

required when random time functions are used, systematic variations in the 
parameters of Model 3 were not explored. It is possible, therefore, that modest 
changes in these parameters could bring the computed ( U )  profiles for Model 3 into 
agreement with experiment comparable to  that of Models 1 and 2 .  

Intensity of turbulence. The computed r.m.s. intensity of streamwise turbulence u’ 
is not greatly different for the three models (figure 4). Each model yields peak values 
of u’ higher than experiment. For models 2 and 3 some irregularities can be seen near 
the outer edge of the viscous sublayer ( Y between about 35 and 40). This irregularity, 
as shown later, is manifested in a more pronounced outer-edge anomaly in the rate 
of dissipation and the intensity of streamwise vorticity fluctuations. The slope of the 
curve of u’( Y )  a t  Y = 0 is equal to S; = ( ( T ~ , - ( ~ ~ ~ ) ) ~ ) : / ( T ~ ) ,  the fluctuating 
intensity of streamwise wall shear stress. In  wall units, computed values of SL for 
the normal mesh are 0.55, 0.47 and 0.50 for Models 1, 2 and 3 respectively. These 
values are higher than experimental values, which range between 0.24 and 0.49. Runs 
with finer mesh intervals did not change appreciably the computed values of S;. 

The computed intensity of turbulence w‘ normal to the wall is nearly the same for 
all three computational models (figure 5 a). Although experiments indicate higher 
values of v’ near the wall, this may be due in sizeable part to experimental errors, 
since hot-wire measurements of v’ are notoriously inaccurate near a wall. Most of the 
experimental data, in fact, extrapolate erroneously to  non-zero values at the wall. 
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FIGURE 6. Mean Reynolds stress and intensity of Reynolds-stress fluctuations. 0, Schildknecht 
et a2. (1979) ; A, 0, Gupta & Kaplan (1972), x , Laufer (1954) ; -, Model 1 ; --, Model 2; ---, 
Model 3. (a )  Reynolds stress. (b )  Intensity of Reynolds-stress fluctuations. 

The computational curves of spanwise turbulence intensity wf (figure 5b)  show 
more variation between the three models. Although the computed levels of w‘ are 
in reasonably good agreement with experiment for all three models, some irregularity 
is again exhibited near the outer edge. At the wall, the slopes of the w’ curves, 
representing the intensity of spanwise shear-stress fluctuations, are 0.14 and 0.31 for 
Models 1 and 2 respectively. These values were determined from runs with a fine 
mesh. Experimental values are about 0.1. 

Reynolds stress. The computed distributions of (uv), as might be expected, show 
similar results to those for (U( Y)). This is illustrated in figure 6 ( a ) .  For Models 1 
and 2 the Reynolds-stress computations agree very well with experiment, but for 
Model 3 the computed values are low. In the case of Model 1 the parameters q5w2 and 
q5u2 were determined by computer trial to provide good agreement with Reynolds- 
stress measurements; and in the case of Model 2, the parameters q5w3 and q5u2 were 
determined likewise ; but for Model 3 these parameters do not appear. The parameters 
PI and y l ,  however, were found in Models 1 and 2 to affect (uv) and ( U(y)). Primarily 
because of the long computer times required for Model 3, however, such parameter 
adjustments were not investigated. 

The computed r.m.s. fluctuations in Reynolds stress as shown in figure 6 ( b )  also 
differ relatively little between the three models. Considering that the experimental 
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FIQURE 7. Skewness and flatness of u velocity fluctuations. 0, Ueda & Hinze (1975); 0,  Elena, 

Fulachier & Dumas (1979); -, Model 1; --, Model 2;  ---, Model 3. 

data scatter widely - because of the inherent difficulty of such measurements very 
near a wall - the agreement between computation and experiment is reasonably good. 

It is also noted that in the outer region of the viscous sublayer, the r.m.8. 
fluctuations in uv are about twice the mean value UV, for both computation and 
experiment. 

Skewness and jatness factor. Distributions of skewness and flatness factor for the 
streamwise velocity fluctuations are presented in figure 7. Near the wall, both 
skewness and flatness are low for Model 1 with its simple harmonic boundary 
conditions on velocity. For Model 2, which simulates more realistically the inter- 
mittent character of burst events, these factors are in much better agreement with 
experiment near the wall, as might be expected. I n  the case of Model 3 with randomly 
generated time functions, the skewness and flatness of u' are considerably greater 
than for Model 2 and the experimental data. The reason for this is uncertain. A 
possible cause may be that these higher-order statistics may require larger com- 
putation times to reach steady conditions than do the lower-order statistics such as 
u', v', etc. 

Similar characteristics are exhibited by the skewness and flatness factor for the 
fluctuating Reynolds stress (figures 8a, b ) .  Here again, the flatness factor for Model 
2 agrees better with experiment than does Model 1 .  Computations were not made of 
the Reynolds-stress skewness and flatness for Model 3.  

Correlation coeficient R,,. As shown in figure 9, all three models yield values of R,, 
of between about 0.4 and 0.5 in the outer three-quarters of the viscous sublayer. The 
computations for Models 3 and 2 exhibit very similar trends, indicating that the use 
of random time functions in place of periodic ones has only a small effect on the u-v 
correlation. Experimental data scatter widely below Y of about 10, with one data 
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FIGURE 9. Reynolds-streas correlation coefficient. 0, Eckelmann (1974); A, Kim et al. (1971); 
0, Schildknecht et al. (1979); V, Kutateladze et a2. (1977); 0, Laufer (1950); x , Laufer (1954); 
-, Model 1 ; --, Model 2; ---, Model 3. 
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FIGURE 10. (a )  Turbulence dissipation ; 0, Laufer (1954) ; , 
Hogenes & Hanratty (1982); -, Model 1 ; --, Model 2, ---, Model 3. (a) Streamwise vorticity 
fluctuations: 0, Kastrinakas & Eckelmann (1983); 0, Kasagi et al. (1984); A, Kastrinakas et ul. 
(1975) ; , Kreplin & Eckelmann (1979), m, Hogenes & Hanratty (1982) ; . . . , Moin & Kim (1982). 

set (Eckelmann 1974) suggesting increasing values of R,, as the wall is approached, 
whereas another set (Kutateladze et al. 1977) indicates strongly decreasing values. 
Considering the wide scatter of these experimental data, all three models yield 
apparently acceptable computations of Ruv. 

Dissipation and streamwise vorticity fluctuation. These two quantities illustrated in 
figure 10 reveal most clearly the existence of an anomaly in all three models near the 
outer edge of the viscous sublayer. Both the rate of turbulence dissipation E ,  and the 
r.m.s. intensity of fluctuating streamwise vorticity a;, exhibit anomalously high 
values in the outer region between about Y = 35 and Y = 40. Since e and 52; reflect 
the magnitude of velocity gradients, it is clear that all three models produce a region 
near the outer edge in which velocity gradients are large and vary rapidly with Y .  
Such a region is of the Stokes-layer type. It is believed to be due to some unrealistic 
aspect of the velocity boundary conditions imposed at Y = 40, to which the 
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Navier-Stokes equations make rapid adjustment, leaving most of the turbulence 
characteristics below Y of about 35 in reasonable accord with reality. 

Inasmuch as dissipation rate is a quantity often used in Reynolds-average 
modelling to determine the important length scale of turbulence, an effort was 
undertaken to vary the model parameters and eliminate, if possible, this undesirable 
anomaly. Systematic variations were made in the parameters a,, j3,, y,, N , ,  N, ,  Nw3, 
dwl, dU2,  q5w3, A ,  X, M, and ( Y)e.  While some changed the value of E at the outer edge, 
none eliminated or reduced it by more than a factor of about 2. In addition, phase 
angles in spanwise space and time for the intermediate-scale component of Model 2 
were introduced and varied, but without any essential effect on the anomaly. 
Moreover, the spanwise profiles of velocity were altered from sin 6 to sinp 6, with p 
being a power greater or less than one, and still the anomaly remained. When runs 
were made with only the small-scale eddy components present, and without any large- 
or intermediate-scale components, it was found that the anomaly still existed. On 
the other hand, it was not present when only the large-scale components of velocity 
were used. The large-scale components contain only a time-varying term and that 
only in the u-  and w-velocity components. We conclude, therefore, that the outer-edge 
anomaly is a consequence of some unrealistic aspect in the structure of the velocity 
boundary conditions for the small-scale eddies which produce the Reynolds stress in 
all three models. 

It may be noted that the Stokes-layer anomaly at  the outer edge is not attributed 
to the approximation of two-and-a-half-dimensional flow. In  principle, the velocity 
fields computed at Y of 30, say, could have been used as outer-edge boundary 
conditions imposed at Y, = 30, and identical results would have been produced below 
Y of 30 without an anomaly. A cursory examination of the velocity fields at Y = 30 
showed them to be much more complex than the conditions imposed at Ye. More 
detailed study of such fields might provide a guide as to how the small-scale-eddy 
velocity components could properly be constructed without producing an anomaly 
at the outer edge. 

6. Near-wall limiting behaviour of turbulence 
Although experimental techniques to date have been unable to determine the 

limiting behaviour of turbulence very near a wall, several different ideas have been 
advanced. Over thirty years ago, Reichardt (1951) concluded that for streamwise 
inhomogeneous flows, uf would be proportional to y, v f  to y2, and UV to y3, as y 
approaches zero, but that for streamwise homogenous flows UV would be proportional 
to y4. Elrod (1957) arrived at the same conclusion. The widely used and highly 
successful damping-factor model of eddy viscosity by Van Driest (1 956) corresponds 
also to UV - y4 near a wall. Some support for this appeared to be provided by the 
theoretical results of Ohji (1967) for homogenous flows which also yielded near the 
wall UV N y", together with R,, - y and (Ruv)w = 0. On the other hand, Coles (1985) 
has recently obtained UV - ys for a simple contrarotating vortex model of viscous- 
sublayer flow. Reviews of differing views on the y3 versus y4 controversy have been 
given by Hinze (1975), and by Monin & Yaglom (1971). 

Numerical computations from the Navier-Stokes equations offer a means of 
resolving this issue. Towards this end, computations with very fine meshes and small 
Courant numbers have been made for Models 1 and 2 for the case of zero pressure 
gradient. (Considerations of computer time precluded doing this for Model 3.) In the 
y-direction 60 points were used across the viscous sublayer, with clustering near the 
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FIQURE 11. Near-wall behaviour of turbulence for Model 1: 0, u‘; 0 ,  (v’)i; A, w‘; V, Ruv; 
+ , - ( U V ) ~ .  Inclined straight lines are proportional to Y. 

Y 

wall and with the closest point at Y = 0.018. In  the z-direction 64 points were used 
evenly spaced spanwise. Owing presumably to a numerical truncation error at the 
wall boundary, the wall turbulence values were not precisely zero (ranging from 
for (uv) to for w’) and were subtracted out in order for the turbulence to be 
precisely zero at  the wall. The results are shown as log-log plots in figures 11 and 
12 for the range of Y between 0.01 and 10. Inclined straight lines in these figures are 
proportional to Y. The limiting near-wall behaviour in each model is clearly u’ - y ,  
v‘ - y2, WI - y, (uv) - y3 ,  and (Ruv)w = constant =I= 0. The constants of proportion- 
ality, of course, differ between the two models: R,, near the wall, for example, 
approaches 0.34 for Model 1, and 0.21 for Model 2. But the limiting power-law 
exponents are precisely the same for the two models. It is noteworthy that the range 
of validity of the limiting power laws is quite different for different turbulence 
quantities: u’ - y out to Y of about 3 or 4, while v’ - y 2  and R,, = constant out to 
Y of only about 0.3. 

In general, the near-wall limiting behaviour for all variables extends to Y of about 
0.3. Between 0.3 < Y < 3, R,,, v‘ and w’, especially for Model 2, depart considerably 
from their respective limiting near-wall power laws. 

6.1. Physical explanation of limiting y 3  variation for UV 

By considering mass conservation near the wall, a simple physical explanation can 
be given for Reynolds stress varying as y3. Very near the wall the leading terms in 
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FIQURE 12. Near-wall behaviour of turbulence for Model 2 :  0, u';  0 ,  (v ' ) f ;  A, w' ;  V, Ruu; 
+ , - ( u v ) ~ .  Inclined straight lines are proportional to Y .  

Taylor-series expansion for the fluctuating velocities are 

u = a,(x,z, t)y+. . . , w = b,(x,z,t)y+. . . . 

For mass conservation, 

so that integration, then multiplication by u and time averaging, yields 

Thus there clearly is a y3 term in streamwise inhomogenous flows wherein aa:/ax 
is not zero. This point has never been in question. In streamwise homogenous flows, 
however, aa:/ax is zero and 

- 
- YS aw Y -uv = a,--+. . . = u--+. . ., 

a2 2 a2 2 

from which it is seen that a leading ys term will also be present if u and awl32 (each 
of which is proportional to y) are positively correlated near the wall. 

In a flow with positive Reynolds stress (-W > 0) sweep-type motions with u > 0 

10 FLP 170 
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FIGURE 13. Sketch of wallward splatting eddy producing positive correlation between u and awlaz. 
Sketched distributions of u, w and aw/az correspond to  the y-value represented by the long-dashed 
line. 

and v < 0 and/or ejection-type motions with u < 0 and v > 0 must dominate over 
motions yielding negative Reynolds stress (u and v of the same algebraic sign). The 
experimental data of Brodkey, Wallace & Eckelmann (1974) show that, as the wall 
is approached, the sweep-type motions increase in relative importance, producing 
twice the contribution to Reynolds stress that  ejection-type motions do at Y = 3, 
the lower limit of their experimental data. Our numerical computations show the 
same trends. Hence, in determining whether or not u and awlaz are positively 
correlated near the wall, we consider first sweep-type motions, i.e. eddies moving 
wallward with u > 0. 

A sketch of such a sweep-type motion, represented by a wallward moving eddy 
with u > 0, is shown in figure 13. Since the eddy cannot pass through the wall, i t  
spreads in both directions spanwise ( '  splats ') upon interacting with the wall. As the 
sketch illustrates, this bilateral spreading produces a positive aw/az; and, since u is 
also positive, a positive correlation between u and aw/az results. With such 
correlation, conservation of mass (21) requires that the leading term in Reynolds 
stress be proportional to y3. 

If ejection-type motions are considered, even though they contribute less to  
Reynolds stress, the signs of u and w are reversed, as are the directions of motion. 
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Hence u and aw/az are again positively correlated, and provide an additional y3 
contribution to UV. 

In the sketch of figure 13 two directions of contrarotating vortical motion 
compatible with the wallward splatting eddy are shown as dashed lines. Such vortical 
eddies may indeed be present, but they are not essential to the physical explanation. 

It is to be noted that the simple physical explanation given for the ys limiting 
behaviour of Reynolds stress depends only on the continuity equation, and is 
independent of the NavierStokes momentum equations. The explanation would 
apply, for example, to non-Newtonian fluids as well as to one obeying the Navier- 
Stokes equations. It would also apply, for example, to curved as well as flat surfaces; 
and to flow with pressure gradient as well as without. Thus, we conclude that the 
y3 limiting variation of Reynolds stress near a wall is very general indeed. Variations 
in the fluid momentum equations, pressure gradient, curvature, etc., will of course 
produce different values for the constant of proportionality in front of y3. 

From the above considerations we can now understand how some previous theories 
have incorrectly yielded y" variations for UV. Elrod (1957), for example, obtained the 
y4 variation for streamwise homogenous flows through the erroneous assumption that, 
by symmetry, u and w (and their derivatives) are uncorrelated. In  the Reynolds 
stress producing sweep motions, u and aw/az are strongly correlated; and this 
correlation produces a ys term. We believe that implicit in the theory of Ohji (1967), 
which yielded a y4 variation for UV, is an erroneous assumption equivalent to 
assuming that u and aw/az are uncorrelated. Monin & Yaglom (1971) have also noted 
that Ohji made a particular non-rigorous assumption not explicitly stated in his 
paper, although they do not identify what the wrong assumption was. 

7. Applications to Reynolds-average turbulence modelling 
The limiting behaviour of turbulence near a wall as defined by the computational 

models can be applied to strengthen certain aspects of Reynolds-average turbulence 
modelling. Two examples illustrating this are outlined in the paragraphs which 
follow. One pertains to the damping factors for Reynolds stress in eddy-viscosity 
models; and another to the wall boundary conditions for dissipation in k-e models 
and stress-equation models. 

7.1.  Damping factors for eddy viscosity models 
In eddy-viscosity (or mixing-length) models, the Reynolds stress near a wall is 
expressed as -(UV)+ = k 2 P D ,  where k = 0.4 is the K6rm6n constant, and D is a 
'damping factor' required to provide a smooth transition between the wall and the 
logarithmic region. The most widely used damping factor has been that of Van Driest 
(1956), namely D,, = (1 -e-Y/A)2, where A is a constant. Near a wall this yields 
- (uV)+ = k2 Y4/A2, unfortunately, an incorrect limiting behaviour. Van Driest ob- 
tained his damping factor by using Stokes flow of an oscillating plate under a 
stationary fluid to. obtain (1 - ecYlA) as the damping factor for u-fluctuations; but 
he further assumed (incorrectly) that the v-fluctuations would be similarly damped, 
and thus obtained (1  - e-Y/A)2 as the damping factor for Reynolds stress. 

It is of interest that the correct near-wall behaviour of Reynolds stress is obtained 
if the analogy of oscillating-plate flow is adhered to for v as well as u-fluctuations. 
The incompressible v-velocity field for an infinite plate oscillating in the y-direction 
is not damped; hence the damping factor for oscillating plate flow is 

10-2 
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FIGURE 14. Law of the wall for three different eddy-viscosity damping factors: vd = Van 
Driest; ---, op = oscillating plate flow ; -, 0s = oscillating shear flow; - - - -, U = 5.6 +5.75 log 
Y, and = Y. 

D 0, = (1  -e-YIAw), where A,, is a constant. This yields the correct cubic power-law 
behaviour near a wall, - (uv)+ = k2y3/AOp. 

A still different damping factor is obtained from the analogy of oscillating shear 
flow over an infinite stationary wall (Chapman & Kuhn 1981). This type of flow seems 
more analogous to real flows than does the Stokes flow of an oscillating plate under 
a stationary fluid. In  oscillating shear flow the u-fluctuations are damped as 
Do, = (1 - 2 cos 7e-q + e-2'')t, where 7 = Y/A,,, and A,, is a constant. This damping 
factor applied to Reynolds stress also yields the correct cubic power-law behaviour 
near a wall, - (uV)+ = k2 y3 42/A,,,. 

In  each case the constants A, A,, and A,, are determined through a quadrature 
(Van Driest 1956) in which it is required that the logarithmic law of the wall for D( Y) 
is satisfied. Using 5.6 + 5.75 log Y for the logarithmic region, the constants that fit 
this turn out to be A = 27.8, A,, = 71.2 and A,, = 111. As illustrated in figure 14, 
the resulting T( Y)-distributions are nearly the same irrespective of which damping 
factor is used. 

Although the different damping factors yield similar results for T ,  they yield very 
different results for UV near a wall. For applications involving heat transfer in fluids 
with high Prandtl number, or diffusion in fluids with high Schmidt number, or the 
rate of deposition on a wall of small particles suspended in a turbulent flow, the 
near-wall values of UV can be of central importance. The three different damping 
factors, when used in the simple eddy-viscosity (mixing-length) model of turbulence, 
yield the following results for Reynolds stress near a wall : 

Damping factor - (uv)+/ y3 near wall 

Dvd, Van Driest 0.0002 Y 
Do,, oscillating plate flow 0.0022 
Do,, oscillating shear flow 0.0020 
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FIQURE 15. Near-wall behaviour of dissipation and related quantities in wall variables for 
Model 2: 0, E ;  0, (6k/yB-(2/y)ak/ay); x ,  (4k/y*)-~. 

By way of comparison, the corresponding results for the present computational 
models are: 

Computational model 

Model 1 0.0007 
Model 2 0.0005 

- (=)+/ P near wall 

7.2. Wall boundary condition for dissipation 
In k-e models, as well as in other models of turbulence that use an a-transport 

equation, it is necessary to  impose a boundary condition on a at the wall. As 
summarized by Pate1 et al. (1981), three different boundary conditions have been 
employed in the past: a, = 0; (aa/ay), = 0; and (a), = (a2k/ay2),, or the equiva- 
lent a, = (2k/y2),, where 2k = ( ~ ’ ~ + w ’ ~ + u ’ ~ ) .  A fourth wall boundary condition, 
a, = 2(aki/ay)k has also been derived (Jones & Launder 1972) but to our knowledge 
has not been used in numerical computations. As a test of the first two of these, the 
near-wall behaviour in Models 1 and 2 of the mean value a of the computed space- and 
time-dependent turbulence dissipation 

is shown in figure 16 in wall variables. It is clear that a, = 0 is incorrect (as is well 
known), and that (aa/ay), = 0 is also incorrect. That the third boundary condition 
is a correct one follows directly from the limiting near-wall behaviour of u’ and w‘ 
(Jones & Launder 1972). Moreover an alternate boundary condition for a, that does 
not involve a2k/ay2, but only a first derivative, can also be derived. We have, using 
wall variables, 

u = a,y+a,y2+O(y3), 
w = b,y+b,y2+O(y3), 
v = c2y2+O(y3), 

where the coefficients a,, a,, b,, b,, and c, are functions of x, z and t .  Hence, 
2k/y2 = ($+g) + 2(a,a,+b,b,)y+ O(y2). Disregarding the very small contribution to 

- -  
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E of spanwise derivatives (which are zero at  the wall), we have 
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- - -  

8 = r<>”+r$y+($>” = (a,+2a2y)2+(b,+2b2y)2+O(y)2 
- _  ~- 

= (a: + b?) + 4(u1a2 + b,b2)y+ O(y2), 

from which it follows that E ,  = (azE/ay2),  = (z+@), and that near the wall ( E - - 8 , )  

varies linearly with y. It also readily follows from manipulation of the above 
equations that the r.m.9. streamwise and spanwise vorticity intensity varies similarly, 
e.g. (52; - Q;,,) - y and (52: - Q;,,) - y ; but that the r.m.s. normal vorticity intensity 
52; - y since 52kw = 0. 

With C = ( a , ~ ,  + b,b,), i t  follows that the first two terms in the near-wall expansion 

2k 
are 

Y 

-- 

-8 = €,+4CY, 1 = sw+2Cy. 

From these two equations there follow some alternative near-wall limiting equations 
for dissipation valid within the small but finite Y-range of limiting near-wall 
behaviour : 

8. 
6k 2 a k  ae 4k 

-8, = ---- 
W 

As illustrated in figure 15, the quantity 6 k / y 2  - (2/y) aklay is very nearly constant 
near the wall. It is equal to the wall dissipation ( E + ) ,  to within 0.1 yo up to about 
Y = 0.6, and within 1 % up to about Y = 1.3. The quantity &/ay is nearly constant 
up to about Y = 0.3. The quantity ( 4 k / y 2 ) - e  in the numerical computations is equal 
to the wall dissipation to within 1 yo up to about Y = 0.8.  For some numerical 
algorithms, a boundary condition involving only a first derivative, or no derivative, 
is preferable to one involving a second derivative. The last equation listed above 
probably provides the simplest wall boundary condition for use in numerical 
computations of the €-transport equation. In terms of known values k, and E ,  at 
the first mesh point away from the wall (located at a Y,  of less than about 0.6 wall 
units), the wall boundary condition in wall variables is simply -8, = (4kl/y?)--8,. 

7.3. Damping factor for Kolmogorof-Prandtl relationship in k-e models 
In k-e models of turbulence, the Kolmogorof-Prandtl relationship between turbulent 
kinematic viscosity vt, dissipation E and kinetic energy k, is taken as 

f, CPk2 
a q a y  t -  E ’ 

- - uv - = v  - 

where C is a constant, and f p  is a damping factor inserted to yield a correct equation 
as the wall is approached. Since -BE - y3, k - y2, and E + E ~  as y+0, i t  follows that 
f would have to vary as y-l near the wall. Among the various ad hoc fp damping 
Lnctions used in the eight different k+ models surveyed by Pate1 et al. (1981), none 
corresponds to a y-l variation near the wall. 

8. Concluding remarks 
Three different computational models for incompressible viscous-sublayer turbu- 

lence have been developed and employed to investigate the limiting variation of 
turbulence near a wall. They are characterized by different velocity boundary 
conditions imposed on the time-dependent Navier-Stokes equations at  the outer 
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edge of the viscous sublayer. Although these boundary conditions differ significantly, 
they yield surprisingly similar results for most of the turbulence quantities. All 
models, for example, yield reasonably realistic computations of mean streamwise 
velocity, Reynolds stress, u-v correlation coefficient, and the fluctuating intensities 
of velocity and Reynolds stress. Relative to Model 1, which is the simplest, the 
principal merit of Model 2 is that it yields more realistic values for the skewness and 
flatness factors near the wall. Model 3, which requires much more computation time 
than either Model 1 or 2, does not appear to yield significant improvement over Model 
2, and relatively little over Model 1. 

All three models exhibit near the outer edge of the viscous sublayer a thin region 
in which velocity gradients vary rapidly from anomalously high values at the outer 
edge ( Y  = 40) to reasonably realistic values at  Y-values of about 30-35. In  this thin, 
outer Stokes-layer region, both the rate of turbulent energy dissipation and the r.m.s. 
fluctuations in streamwise vorticity are anomalously high. This is the principal 
inaccuracy of the models. The outer-edge anomaly is attributed to some unrealistic 
aspect of the small-scale eddy structure in the boundary conditions. This anomaly 
is believed not to affect conclusions about the limiting near-wall power-law behaviour 
of turbulence. 

The limiting third-power variation of Reynolds stress near a wall is concluded to 
be very general because of the physical explanation underlying it. In  essence, 
wallward splatting eddies that produce the principal Reynolds stress near a wall also 
produce positive correlation between u and awlaz, and this requires a y3 variation 
to conserve mass. Since this physical explanation applies equally to Newtonian or 
non-Newtonian fluids, to flows with or without pressure gradient, and to curved or 
flat walls, the y3 variation is concluded to be very general. The constant of 
proportionality, of course, may depend upon such variables; but the cubic variation 
will not. 

It is noted that the limiting power laws for several of the turbulence quantities 
are accurate only for Y less than about 0.3, while for other quantities it extends out 
to larger values of Y. This is a surprisingly small domain. In the range 0.3 < Y < 3, 
power laws are still a good approximation, but the exponents change a little : to less 
than 1 for w‘, less than 2 for v’, and to slightly greater than 3 for UV. The u-v 
correlation varies considerably over this range. 

The observed limiting behaviour of various turbulence quantities near a wall, as 
reflected in the exponent of their limiting power-law behaviour, is summarized as 
follows : 

U’ W’ 
No variation, RUv, - 

<U>’ (u>’ 
V’ 

y variation u‘, - w’, (Q;-Q;A a;, (Q:-Q:,), (e-e8,);  < U>’ 
y2 variation v’; 

y3 variation <uv). 
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